Quantum Computation
نویسنده
چکیده
The remarkable developments in theoretical and experimental quantum computation that have been inspired by Feynman’s seminal papers on the subject are reviewed. Following an introduction to quantum computation, the implications for cryptography of quantum factoring are discussed. The requirements and challenges for practical quantum computational hardware are illustrated with an overview of the ion trap quantum computation project at Los Alamos. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made. “...it seems that the laws of physics present no barrier to reducing the size of computers until bits are the size of atoms, and quantum behavior holds dominant sway.” R. P. Feynman, 1985. [1] “ I think I can safely say that nobody understands quantum mechanics.” R. P. Feynman, 1965. [2]
منابع مشابه
Theoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths
The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage. The considered systems were composed from one-layer graphene sheets differing w...
متن کاملTheoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths
The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage. The considered systems were composed from one-layer graphene sheets differing w...
متن کاملفاز هندسی سامانههای اپتومکانیکی
In this paper, with respect to the advantages of geometric phase in quantum computation, we calculate the geometric phase of the optomechanical systems. This research can be considered as an important step toward using the optomechanical systems in quantum computation with utilizing its geometric phase.
متن کاملComputational Computation of the Efferene Structure on the Para phenylene diamine
In this study, the effect of fullerene electron mobility on the composition of paraphenylenediamine and stability was studied. Using quantum chemistry calculations, the first combination of paraffenylenediamine in a single-full-time region connected with fullerene through carbon atoms was reported. Experimental research was simulated and optimized using GIS software. Then the NBO calculations w...
متن کاملA novel vedic divider based crypto-hardware for nanocomputing paradigm: An extended perspective
Restoring and non-restoring divider has become widely applicability in the era of digital computing application due to its computation speed. In this paper, we have proposed the design of divider of different architecture for the computation of Vedic sutra based. The design of divider in the Vedic mode results in high computation throughput due to its replica architecture, where latency is mini...
متن کاملA novel vedic divider based crypto-hardware for nanocomputing paradigm: An extended perspective
Restoring and non-restoring divider has become widely applicability in the era of digital computing application due to its computation speed. In this paper, we have proposed the design of divider of different architecture for the computation of Vedic sutra based. The design of divider in the Vedic mode results in high computation throughput due to its replica architecture, where latency is mini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computing in Science and Engineering
دوره 3 شماره
صفحات -
تاریخ انتشار 2001